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Highly swept blades are now commonly used in modern aeroengines, and in this 
paper we solve a model problem of relevance to the understanding and prediction 
of noise generation by the interaction between incident vortical disturbances and 
such a blade. In order to include the potentially significant effects of the blade-tip 
region, we consider a (semi-infinite span) quarter-plane aligned at a non-zero sweep 
angle to supersonic mean flow, with a single harmonic gust incident on the quarter- 
plane from upstream. The solution is completed using a novel application of the 
Wiener-Hopf technique, in which the usual factorisation is carried out with respect 
to two independent complex variables separately, and closed-form expressions for the 
practically important lift per unit span are derived for both the subsonic and the 
supersonic leading-edge regimes. The dependence of the unsteady response on the 
sweep angle and the gust wavenumbers is examined, and in particular we demonstrate 
that the magnitude of the effects of the tip region is significantly reduced by increasing 
the blade sweep or by considering gusts of higher frequency. It also becomes clear 
that the magnitude of the unsteady response can be either decreased or increased by 
sweeping the blade, in a way which proves highly dependent on the particular values 
of the flow parameters. In addition, we consider the two critical values of the gust 
trace speed along the leading edge which correspond to the sonic velocities in the 
two spanwise directions, and for which the chordwise oscillation of the unsteady lift 
distribution on an infinite-span blade vanishes. In these two cases, the lift per unit 
span (integrated over the infinite chord) is clearly singular, but we demonstrate that 
the effect of including the blade tip is to smooth out just one of these singularities, 
and replace it instead by a relatively large, but finite, value. 

1. Introduction 
The blades used in modern propellers and ducted fans are often highly swept, in 

order to improve the aerodynamic performance by reducing the leading-edge normal 
velocity near the transonically moving blade tip, and in addition this can have the 
added benefit of significantly reducing the noise generated (see for instance Hanson 
1980), by introducing a radial dephasing of the effective sources along the blade 
span. The noise will typically be composed of a number of different components, 
but for ducted-fan systems and contra-rotating propellers the most significant noise- 
generation mechanism involves the interaction between some vortical disturbance, 
perhaps corresponding to the wake shed from an upstream row, and the rotating 
blades. In order to predict this noise one requires the unsteady response of the 
blade to the incident disturbance (i.e. the induced unsteady lift distribution on 
the blade surface), which can then be substituted into standard radiation integrals 
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corresponding to a summation over effective sources along the blade span. As we 
have already mentioned, one effect of blade sweep is to reduce the noise generated 
by changing the radial phase of these effective sources; however, sweeping the blade 
will also change the source strength, and it is not clear a priori whether the sweep will 
reduce the magnitude of the unsteady response (thereby tending to reduce the noise 
still further), or increase it (thereby cancelling out either partially, or perhaps even 
completely, the noise benefits gained from the adjustment of the radial phasing). In 
this paper we shall therefore consider the effect of the sweep on the unsteady response, 
and it will indeed emerge that sweeping the blade can under certain circumstances 
lead to a marked increase in the effective source strength. 

We consider a single harmonic velocity gust, as a simple component of some more 
complicated disturbance, which is convected by a uniform supersonic free stream and 
which is scattered by a thin blade aligned at non-zero sweep angle but zero angle 
of attack to the flow. One could further suppose that the blade has an infinite span 
(that is, it possesses an infinite extent in both spanwise directions), and a considerable 
body of work has been completed on such a system, for both subsonic and supersonic 
mean flows; see for instance Adamczyk (1974), Martinez & Widnall(l980) and Amiet 
(1976), and Landahl(1989) with particular reference to transonic mean flow. However, 
since modern blades typically possess a span of only a few chord lengths, and since a 
significant amount of the noise generation will often occur near the blade tip, the use 
of such infinite-span response theory seems inappropriate, and some account of the 
effects of the combination of the presence of the blade tip and the sweep needs to be 
made (we note here that Envia & Kerschen 1984 have studied the unsteady flow past 
a swept, finite-span airfoil in a duct). We therefore consider the interaction of a gust 
with a (semi-infinite span) quarter-plane in order to better model the tip effects, and 
consider only gusts with a moderate or high reduced frequency, so that the effects of 
the trailing edge can be neglected as a first approximation. The scattering of gusts 
and sound waves by unswept quarter-planes has attracted some interest in the past; 
Miles (1951) has considered an oscillating quarter-plane in supersonic mean flow, 
whilst Martinez & Widnall (1983) have developed an approximate solution for the 
case of subsonic flow, and Peake has studied the equivalent problem in transonic flow 
(Peake 1992) and the interaction between a steady jet and an unswept quarter-plane 
in supersonic flow (Peake 1993). The analysis presented here can therefore be thought 
of as an extension of much of this work to include the effects of sweep. Although 
fan and propeller blades do not have rectangular tips in practice, the use of a swept 
quarter-plane here seems an appropriate first step, which both captures the main 
features of the problem and which is amenable to analytical solution. 

In $2 we present the formulation and solution of the problem, considering the 
two cases of the mean flow possessing either a supersonic component normal to 
the leading edge (i.e. relatively little sweep) or a subsonic component (i.e. a more 
significant amount of sweep). Here we employ a rather novel application of the 
standard Wiener-Hopf technique, in which we Fourier transform along both the 
spanwise and chordwise directions, and then make a multiplicative decomposition of 
the usual Wiener-Hopf kernel with respect to both integration variables in succession. 
Using this method we are able to derive an integral expression for the scattered field, 
but since it has not proved possible to manipulate this result into a closed-form 
expression, some simplification is required, and could be made by either considering 
the radiation far from the blade using the method of stationary phase, or by developing 
an expression for the chordwise-integrated unsteady lift (the l f t  per unit span) on the 
quarter-plane. However, the radiation in our simplified problem seems to be of little 
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relevance to the actual radiation produced by a rotating blade, and we therefore 
proceed by deriving a closed-form expression for the lift per unit span; as well 
as being very closely related to the effective radial source strength along the blade 
required in noise prediction (see Peake 1992, Appendix B for full details), this provides 
an illuminating and convenient way of assessing the level of the unsteady response. 

In $2 we also consider the two critical values of the component of the gust phase- 
front trace speed along the leading edge which correspond to the respective sonic 
velocities in the two spanwise directions. For both these two critical values, the 
chordwise oscillation associated with the unsteady lift on the infinite-span airfoil 
vanishes (i.e. infinite chordwise wavelength), so that the lift per unit span integrated 
over the infinite chord does not converge, and is singular. However, it will be shown 
that the lift per unit span on our quarter-plane is only singular for the critical value 
corresponding to the sonic velocity along the span in the direction towards the tip, 
and that it takes a relatively large, but finite, value for the other critical leading-edge 
trace speed. From this we are able to deduce that the disappearance of the chordwise 
oscillation, and consequent infinities in our expression for the lift per unit span, arise 
from the unrealistic infinite extent of our model blades in one or both spanwise 
directions. Further, it can be seen that the lift per unit span on a finite-span blade 
will typically possess its largest value when the gust wavenumbers and sweep angle 
combine in such a way as to yield a leading-edge trace speed equal to one of these 
two critical values. 

The behaviour of the lift per unit span is assessed in $3 for various typical sets of 
parameter values, and we demonstrate in particular how the level of the effect of the 
presence of the tip on the unsteady lift decreases as the sweep angle is increased, and 
that how, under certain circumstances, the lift per unit span can actually be increased 
by sweeping the blade. 

Finally, we again emphasize that the expressions for the lift per unit span presented 
in this paper have been determined by integrating the detailed unsteady lift distri- 
bution along the (supposed) infinite chord of either the infinite-span blade or the 
quarter-plane, leading to the divergence of our lift per unit span in the critical cases 
where the chordwise oscillation vanishes. An alternative (more accurate) approach, 
used by Landahl(1989), is to determine the lift distribution for the infinite-chord blade 
as above, and then to integrate this numerically over a realistic finite chord length. 
Given the highly complicated nature of the various Fourier integrals, which would 
also require numerical inversion, this second approach has not been attempted for the 
present problem. However, for the large reduced frequencies, S Z ,  considered, it can be 
shown that, provided we are not too close to the critical cases in which the chordwise 
oscillations disappear, the lift per unit span calculated in this paper is O(SZ-') - see 
(2.16) - and that the discrepancy betwey our results and those which would be 
obtained using Landahl's method is O(SZ-z), due to the strong chordwise cancellation 
effects away from the leading edge. For most parameter values the appraoch adopted 
here will therefore be in reasonable agreement with Landahl's method, so long as SZ 
is moderately large. However, when the chordwise oscillations become very weak (or 
disappear completely), the lift per unit span calculated by integrating along an infinite 
chord will become very large (or infinite), and a meaningful answer can then only 
be obtained using Landahl's approach (of course, the infinities in our results indicate 
the parameter values for which the response of the real finite-chord blade is likely to 
be largest). A significant result of this paper is that the inclusion of a blade corner 
in the model reduces the number of critical sonic velocities for which the chordwise 
oscillations disappear from two to one. This then suggests that when considering a 
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FIGURE 1. Plan view of the system (the z-axis points out of the plane). 

model blade with a tip, the parameter range over which our approach of integrating 
along a supposed infinite chord gives meaningful results is considerably greater than 
that for a simple ‘two-dimensional’ analysis of an infinite-span blade. 

2. Mathematical solution 
2.1. Formulation 

We consider a semi-infinite-span rigid blade of zero thickness with a chord of uniform 
length c, and choose the y-axis to be aligned along the blade leading edge and the 
x-axis along the side edge. There is a uniform supersonic mean flow of speed U 
in a direction making a positive angle A with the x-axis (so that A is the angle of 
sweep of the blade), and the mean-flow Mach number is M ( M  > 1). The system 
is shown in figure 1. In what follows, lengths are non-dimensionalized by c, time by 
c / U ,  velocities by U ,  densities by the uniform density of the fluid po and pressures by 
poU2. We suppose that a convected harmonic velocity gust is incident on the blade 
from upstream, so that the normal-velocity upwash on the blade is of the form 

Vexp(is2t - ialx - ia2y)z , (2.1) 

where s2 is the reduced frequency of the system (s2 = coc/U, with co the dimensional 
gust frequency), al and a2 are the gust wavenumbers associated with the chordwise 
and spanwise directions, V is the gust magnitude and z is the unit vector perpendicular 
to the blade. The gust wavenumbers associated with the directions parallel to and 
perpendicular to the mean flow are s2 (since the convected gust must possess zero 
acoustic pressure) and kp respectively, and expressions for a1,2 as functions of s2, k, 
and A can be derived via simple trigonometry. We suppose that V << 1, so that 
the scattered field generated by the interaction between the gust and the blade will 
be irrotational and will be governed by linear theory (see Goldstein 1976), with the 
velocity potential &(x, y, z )  exp(is2t) satisfying the convected wave equation 

+ M 2 0 2 &  = 0 , (2.2) 
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where M1 = M cos A and M2 = M sin A are the Mach numbers corresponding to the 
components of the mean flow normal to and along the blade leading edge. In this 
paper we shall suppose that the side edge is always subsonic (M2 < I), but will allow 
the leading edge to be either subsonic (M1 < 1) or supersonic (MI > 1). The effects 
of the trailing edge of the blade on the scattered field are likely to be small compared 
to those of the leading and side edges, particularly for moderate or large values of 
Q, and in what follows we therefore neglect the presence of the trailing edge in our 
analysis, and thereby represent the semi-infinite blade by a quarter-plane lying in the 
first quadrant of the (x,y)-plane. The chord length c therefore only appears in the 
analysis when non-dimensionalizing the lengths and in the definition of the reduced 
frequency. The condition of zero normal velocity on the blade therefore becomes 

*(x,y,o) + v exp(-ialx - ia2y) = o for x > 0,y > o , az 
and we shall also require that the acoustic pressure of the scattered field is continuous 
across the plane z = 0, apart from across the quarter-plane. We must ensure that the 
solution is causal, and to facilitate this we suppose that 52 possesses a small negative 
imaginary part. In addition, in order that the subsequent Fourier transform of (2.3) 
converges, we shall require that kp also possesses a small negative imaginary part in 
such a way that both a1 and c12 lie in the lower half of the complex plane; these 
imaginary parts are all set to zero at the end of the analysis. 

2.2. Wiener-Hopf analysis and solution 
The solution will be completed using Fourier transforms, with 

@@I, k2,z) = $(x, y, z) exp(iklx + ik2y)dxdy , (2.4) 1: 
and by transforming the wave equation with respect to x and y it can be shown that 

@(kl, k2,z) = ;sgn z [Wl, k2,O)lt exP(-iy Iz I) 9 (2.5) 

where [@(kl,k2,0)]? is the Fourier transform of the jump in $(x,y,z) across z = 0 
and where 

y2(k1, k2) = M2Q2-( 1 -Mt)k;-(l -M,2)k,2+2M52(M2k2-Mikl)-2M1 M2klk2 . (2.6) 

In order to specify the value of y(kl,k2) branch cuts are required in both the kl 
and k2 planes, and the nature of these cuts is dependent on whether the mean-flow 
component in the corresponding physical direction is subsonic or supersonic; since 
we are supposing throughout that the side edge is subsonic (M2 < l), the branch 
cuts in the k2 plane will always be chosen to join the branch points in the upper and 
lower half-planes to infinity through the upper and lower half-planes respectively, 
with y(kl,k2) taking negative imaginary values as k~ approaches infinity along the 
positive real axis. If the leading edge is also subsonic (i.e. M1 < l), then the branch 
cuts in the kl plane are specified in exactly the same way; for a supersonic leading 
edge ( M I  > I), however, both branch points must be joined to infinity through the 
lower half of the kl plane. 

We will apply the Wiener-Hopf technique with respect to the k2 variable, but in 
order to achieve this it turns out that we must augment the normal-velocity boundary 
condition on the quarter-plane {x > 0,y > 0,z  = 0} by in addition specifying 
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d4(x,y,z)/dz on the quadrant {x < 0 , y  > 0,z = O}. We first note that, since the 
free stream is supersonic, the corner and side edge of the quarter-plane can have no 
upstream influence, and that therefore the scattered field on {x < 0 , y  > 0,z = 0) 
must be exactly equal to that which would be observed for an infinite-span blade 
with no corner. Two cases now arise; first, if the mean-flow component normal to the 
leading edge is supersonic (MI > 1) then there can be no scattered field ahead of the 
leading edge, so that d4(x , y70) /dz  = 0 in x < 0 , y  > 0; and second, when the leading 
edge has a subsonic velocity component the field in x < 0,y > 0 is non-zero, but as 
argued above can be determined by solving the simpler problem of scattering by an 
infinite-span blade. It can therefore be shown that (2.3) becomes 

where the plus superfix indicates that the y-integration has been taken over the semi- 
infinite range y > 0, and E ( k l ,  k 2 )  is the as yet unspecified transform of &$(x, y, O)/& 
over x < 0 , y  > 0. As is usual in Wiener-Hopf problems, we shall require a 
multiplicative factorization of the kernel y ( k l ,  k2) in the k2 plane, in the form y(k1, k2) = 

y+(2)(kl, k2)y-(2)(kl, k2), with y*(2)(kl, k2) analytic and non-zero in the upper and lower 
halves of the complex k2 plane respectively (the superfix (2) is used to indicate that 
here the factorization of y(k1, k2) has been completed in the kz plane). By writing 

y2(k1,k2) = 4 1  - Mi) (k*  - A)(k2 - B )  2 (2.8) 

where A(k1) and B(k1) are the branch points lying in the upper and lower halves of 
the k2 plane, it becomes clear that we can take 

y+(2) (k l ,k2)  = -i(l - M;)$(k2  - B ) $  , (2.9) 

with a similar expression for y-(2)(kl,  k2). 
It now remains to determine expressions for the E ( k l , k 2 )  of (2.7) for both M1 less 

than unity and M 1  greater than unity, by considering the problem of scattering by an 
infinite-span blade. The analysis of the infinite-span problem can in fact be completed 
in a very straightforward manner by noting that the scattered potential must be of 
the form y(x,z)exp(-ia2y), and then by Fourier transforming with respect to x and 
application of the usual Wiener-Hopf arguments (this time with respect to the kl 
variable) we find that for M I  < 1 

where now y(k1,k2) = y+(')(kl ,  k2)y-(')(kl ,  k2) ,  and y*( l ) (k l ,k2)  are analytic and non-zero 
in the upper and lower halves of the complex kl plane respectively; we emphasize 
that 

(2.11) 

The expression for E(k1,kz) with M1 < 1 can now easily be derived from (2.10) - 
clearly E(kl ,  k2) = 0 for M I  > 1. 

In the first instance we suppose that the leading edge has a subsonic velocity 
component ( M I  < l), and substitute the expression for E ( k l ,  k2) derived above together 
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with (2.5) into (2.7), to give 

(2.12) 

where the minus superfix indicates that the y-integration has been completed over the 
range y < 0 and [P(k l ,k2 ,0 ) ]1  is the Fourier transform of the pressure jump across 
z = 0. We now note that the left-hand side of (2.12) is analytic in the upper half of 
the k2 plane, whilst the right-hand side is analytic in the lower half of the k2 plane (as 
already noted, a2 possesses a negative imaginary part and therefore lies in the lower 
half of the k2 plane), and that (2.12) therefore defines a function, F (k1 ,k~)  say, which 
is analytic in the entire complex k2 plane. The choice of F(k1,kZ) is now made by 
considering the behaviour of the scattered field in the limit y -+ +O (equivalent to the 
limit k2 -+ 00 in the upper half-plane); we require the scattered field to be non-singular 
along y = 0, and it turns out that in order to achieve this we must set F(k1, k2) equal 
to a function of k l  alone (i.e. F ( k l ) ) ,  in such a way that [P(kl,k2,O)]? cc k i  as k2 -+ 00. 

We find that 

3 

(2.13) 

This specification is entirely equivalent to the imposition of a Kutta condition (see 
Crighton 1985) along the side edge y = 0, and corresponds physically to the fact 
that vorticity will be shed from the side edge of the quarter-plane so as to ensure 
that the scattered field remains non-singular at the side edge. Clearly, this vortex 
shedding can only occur for a non-zero sweep angle (i.e. when the mean flow possess 
a non-zero component normal to and away from the side edge), and in the special 
case of M2 = 0, when the mean flow cannot convect away vorticity shed from the 
side edge, the required choice of F ( k l )  is identically zero. The solution of the problem 
can now be completed, and we find that the scattered pressure for M1 < 1 is given by 

(2.14) 

with the integration contour suitably indented above and below the various branch 
points and poles. We note that the analysis for the case of a supersonic leading 
edge (MI > 1) can be completed in much the same way, and it turns out that the 
expression for the scattered pressure is exactly equal to that derived above in the 
subsonic case, but with the factors y-(')(al, a2) and y-(')(kl, a2) set equal to unity. 

Our concern in this paper is with the unsteady pressure on the blade surface, 
but it has not proved possible to find a closed-form expression for the detailed lift 
distribution [p(x,y, O)]? from (2.14), and we proceed instead by deriving an expression 
for the lift per unit span, 9 ( y ) ,  defined by 

4 

(2.15) 

FLM 271 
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as argued in the introduction, T ( y )  will be in good agreement with the lift integrated 
over the actual finite chord, provided that T ( y )  converges. We extend the x- 
integration in (2.15) to -a, substitute the expression for the pressure jump in terms 
of [P(kl,k2,0)]f derived above and complete the x-integral as 2n6(kl). The remaining 
k2 integral can then be completed by deforming the contour round the branch cut 
in the lower half-plane; the branch-cut contribution is evaluated using a result from 
97.1.3 of Abramowitz & Stegun (1968), and adding in the contribution from the pole 
at k2 = a2. It turns out that the lift per unit span on our semi-infinite span blade for 
MI < 1 is 

x erf [~+(~) (0 ,  a2) exp(iz/4)yi /( 1 - M;)'] . (2.16) 

For the M1 > 1 result we again simply set y-(l) equal to unity in (2.16). The rather 
complicated algebraic expressions for the various factors of y appearing in (2.16) are 
given in the Appendix. In addition, an expression for the acoustically weighted lift 
per unit span (which is used directly in noise-prediction codes, and which is defined 
in exactly the same way as 9 ( y )  apart from an extra factor exp(iKx) to account for 
retarded-time differences along the chord, where the wavenumber K depends on the 
various operating parameters), could be derived by a trivial modification to the above 
(Peake 1992). 

It is easy to show that the lift per unit span on an infinite-span blade, denoted 
2?inf(y), would be the same as the expression given in (2.16) but without the error- 
function factor, i.e. for M1 < 1 

(2.17) 

Equation (2.16) is the principal mathematical result of this paper, and will be used 
in the next section to study the dependence of the unsteady lift on the various flow 
parameters, but before doing that we will consider the possibility of Z ( y )  and Tpinf(y)  
becoming infinite for certain critical values of the flow parameters, as follows. 

2.3. Singularities in the lqt per unit span 
First, in the infinite-span case it is clear that our expression for Tinf (y)  will become 
infinite when y+(l)(O, a2) vanishes (the factor y-(l)(a1, a2) cannot vanish for any choice 
of a1 and a2, since a1 lies in the lower half-plane and y-(l)(kl, k2) was defined so as 
to be non-zero in the lower half of the kl plane), and in fact y+(')(O,a2) has the two 
zeros 

-MQ 
1-M2 1 +M2 

and a2 = ~ . 
MQ 

a2 = ~ (2.18) 

There are therefore two critical values of a2 (the component of the gust phase-front 
trace speed along the leading edge) for which Ti,f(y) becomes infinite, and it is easy 
to see that they correspond to the values of the sonic velocity along the leading edge 
in the positive y-direction and in the negative y-direction respectively. The detailed 
lift distribution generated by a gust striking the infinite-span blade, [Pzd(x,y, O)]?, 
can be shown to be proportional to x-fexp(i~x) for fixed y, where the chordwise 
wavenumber x depends on the incident-gust wavenumbers; when cn2 takes either of 
the values (2.18) we find that x = 0, so that the chordwise integral of b2d(x,y,0)]+ 
over the infinite chord of the quarter-plane does not converge. We again emphasize 
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that in these two critical cases the gust trace speed along the leading edge is exactly 
sonic, so that no spanwise separation can occur between the scattered sound field and 
the incident gust, causing the chordwise wavelength of the scattered field to become 
infinite and leading to the infinities in LZLnf(y). 

Second, in the semi-iizjinite span case it can be shown from (2.16) that 9 ( y )  also 
becomes infinite when ~2 = -MSZ/(I + M2),  corresponding to the gust trace speed 
along the leading edge being exactly equal to the sonic velocity in the negative 
y-direction. However, it turns out that 9 ( y )  is finite when m2 = MSZ/(l - M2), 

which is when the gust trace speed along the leading edge coincides with the sonic 
velocity in the positive y-direction. Mathematically this is because the critical value 
a2 = MSZ/(1 - M I )  corresponds to the single zero of ~ + ( ~ ) ( O , a z ) ;  with (2.16) in mind 
we define 

so that 

(2.19) 

(2.20) 

and hence it follows that the zero of the error function has the effect of cancelling 
the zero in the denominator in (2.16), leading to ajinite value of 9 ( y )  for this critical 
value of u2. Moreover, it is easy to show that the function Q(Q) attains its maximum 
value for u2 = M Q / (  1 - M2),  and since the argument of the error function in Q(u2) is 
proportional to SZf and we are concerned here with moderate and large values of 8, 
it follows that Q(u2) is a relatively sharply peaked function near u2 = MSZ/(l - M2) 
and will therefore tend to dominate the behaviour of 9 ( y ) ,  provided that y is not 
exceedingly small. It can therefore be seen that as u2 is varied the critical value 
u2 = MSZ/(1 - M 2 )  will yield a large (local maximum) value of l 9 ( y ) l  all along the 
span, apart from in an effectively unimportant region for which y << 1. 

We have seen that for the infinite-span blade the chordwise oscillations in lift 
distribution will vanish (i.e. infinite chordwise wavelength), leading to the singularities 
in 5?inf(y), when the spanwise gust trace speed is equal to either of the sonic velocities 
along the leading edge, but that for the quarter-plane this only arises when the 
spanwise trace speed is equal to the sonic velocity in the negative y-direction - 9 ( y )  
is finite when the spanwise trace speed coincides with the sonic velocity in the positive 
y-direction. We can therefore conclude that the infinite chordwise wavelength, and 
consequent divergence of 9inf(y), observed when a2 is equal to the values (2.18) is 
associated with the unrealistic infinite extent of the blade in the negative and positive 
spanwise directions respectively. It follows that if one were to consider a finite-span 
blade, then no singularity in 9 ( y )  would be present, and that 9 ( y )  should be in good 
agreement with the lift integrated over the actual finite chord for all u2, including the 
two critical values (2.18). The arguments following (2.20) suggest that the maximum 
(finite) amplitude of the unsteady response of a finite-span blade would occur when 
a2 is equal to either of these two critical wavenumbers. 

Finally, we note that as well as becoming infinite at one or both of the critical 
values of 1x2 given in (2.18), 9 ( y )  and z j n f ( y )  are also infinite in the special case 
M I  = 0. This additional singularity corresponds to the gust wavenumber along the 
chord becoming identically zero, and could presumably be resolved by including the 
trailing edge in the analysis. This case will not be considered further; in the examples 
which follow M I  is always large and positive 

4-2 
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3. Results and discussion 
We now proceed to consider the behaviour of 9 ( y )  along the blade span and 

for various typical parameter values. It can easily be seen from (2.16) that the lift 
approaches zero close to the side edge (in fact 2 ( y )  cc y f  as y -+ +O), and this 
corresponds to the fact that the pressure difference across the quarter-plane induces 
an unsteady flow around the side edge, from the pressure surface to the suction 
surface, which acts so as to reduce the pressure difference to zero as the side edge 
is approached. In addition, the effect of the presence of the side edge tends to zero 
very far from the side edge, since the error-function factor in (2.16) approaches unity 
as y -+ co. In figure 2 we plot 19(y) /VI  against spanwise coordinate, y ,  for M = 1.2 
and 52 = k, = 5, in the two cases of A = 0 (unswept, supersonic leading edge) and 
A = n/4 (swept, subsonic leading edge) - in both these cases a2 is very far from 
the two critical values identified in the previous section. Both curves exhibit the 
behaviour described above as y -+ 0 and y .+ co, but the lengthscale over which 
2 ( y )  approaches its infinite-span limit (and hence the portion of the blade span over 
which the tip effects predominate) differs widely in the two cases. For A = n/4 
( M I  = M2 = 0.85) the spanwise distance taken for the lift to adjust from the value 
zero at the side edge to a value relatively close to the corresponding infinite-span 
result is of the order of only several gust wavelengths, whereas the transition takes 
place over a much longer lengthscale for the A = 0 case (indeed, for the unswept 
blade with these parameters I Y ( y ) / V l  will only approach within 10% of ldPinf(y)/Vl 
for y 30 - i.e. beyond 30 chord lengths from the tip). This behaviour can be 
understood by writing the modulus of the argument of the error function as ( y /Z ) f ,  
so that the spanwise lengthscale, 1, over which 2 ( y )  approaches its infinite-span limit 
satisfies 

-1 l c c  (--a2) M52 
1-M2 

If we consider some given incident gust (i.e. fix D and kp) ,  and increase the sweep 
angle from zero, then the magnitude of the first term in (3.1) increases monotonically 
and becomes large, whilst the value of a2 remains bounded (the precise behaviour of 
a2 as A increases depends on the relative values of the gust wavenumbers 52 and k,). 
We can therefore conclude that, provided A (and hence M 2 )  are not too small, the first 
term in (3.1) will tend to dominate the second term, and it follows that 1 will be much 
smaller for a swept blade with a subsonic leading edge than for an unswept blade 
encountering the same gust. The portion of the span over which the tip region has a 
significant injluence on the l f t  distribution is therefore seen to be significantly reduced 
by sweep. This conclusion is supported in figure 3, where we plot the tip correction 
coefficient, C, defined by 

which measures the magnitude of the effect of the blade tip; the portion of the span 
over which C differs significantly from zero is seen to decrease markedly as the sweep 
angle A increases. In addition, we can see from (3.1) that for k, = O(52) we have 
1 cc E', so that the spanwise extent of the region of influence of the tip decreases 
with increasing gust frequency. Figure 2 indicates that sufficiently far from the tip the 
discrepancy between 9 ( y )  and Z i n f ( y )  takes the form of a slowly decaying spanwise 
oscillation, and by considering the second term in the asymptotic expansion of the 
error function in (2.16) as y + co, it follows that, sufficiently far from the tip, the 



Swept blade 97 

A =  xl4 

I I 4 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Spanwise coordinate, y 

FIGURE 2. Plots of the modulus of the normalized lift per unit span for the quarter-plane, lU(y)/Vl 
(solid lines), and for the corresponding infinite-span blade, I T i n f ( y ) /  V (  (dashed lines), against 
chordwise coordinate y ,  with M = 1.2, SZ = k ,  = 5 and with A = 0 (unswept, supersonic leading 
edge) and A = 7c/4 (swept, subsonic leading edge). 

effect of the unsteady flow near the tip on 2 ( y )  is to generate a wave of wavelength 
1 and amplitude proportional to y-f propagating away from the tip. 

In figure 4(a-c) we select a single spanwise station (here y = 1, although other 
choices of y would give plots exhibiting qualitatively the same behaviour) and consider 
the variation of ILi?(l)/VI and lLYinf(l)/V1 as the sweep angle, A,  is increased from zero 
to a value just less than sin-' 1/M2 (so that the mean flow component perpendicular 
to the side edge never becomes supersonic) with M fixed, for three different sets of 
values of the gust wavenumbers 52 and kp. In figure 4(a) we have 52 = k, = 5, and 
for this choice of parameters neither of the critical values of a2 given in (2.18) lie in 
our A-range. It can be seen that here the infinite-span lift ziar(l) decreases from 
its maximum value at zero sweep to a much lower value once the leading edge has 
become subsonic, and that, in agreement with our earlier arguments, the discrepancy 
between 2( 1) and 2Zinf( I), and hence the level of tip effects, is largest for the smaller 
sweep angles. In figure 4(b)  we have 52 = 5 and k,  = 0, and here the critical value 
a2 = -M52/(1 + M2), for which both 2(1) and Tinf(l)  become infinite, arises in 
our sweep range; for this choice of incident-gust wavenumbers the unsteady response 
of the blade would increase as the sweep angle is increased from zero up to the 
point where the critical value of a2 is reached, and would then tend to decrease for 
larger sweep angles. Finally, in figure 4(c) we choose 52 = 5 and k, = 10, and here 
the other critical value a2 = MS2/(1 - M2), for which 2Z2d( l )  is singular but Y(1) 
is non-singular, arises in our A-range. In particular, we note that l2(l)( takes a 
relatively large (maximum) value at this critical point, in agreement with our earlier 
arguments, before being reduced as the sweep angle is increased further. It is therefore 
clear from our sequence of figures (which are representative of the behaviour for any 
spanwise coordinate) that the effect of blade sweep can be to either decrease or 
increase lLi?(y)/Vl, in a way that depends on the values of the gust wavenumber and 
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FIGURE 3. Plots of the modulus of the tip correction coefficient, C, against spanwise coordinate y ,  
for various values of A and with other conditions as in figure 2 (the case A = n/8 corresponds to 
a swept, supersonic leading edge). 

on the choice of sweep angle. It is worth noting that the maximum in the value of 
l Y ( y ) / V l  coincident with the critical value u2 = MSZ/(1 - M2),  as observed in figure 
4(c) for y = 1, was found to occur for almost all y (certainly for all y > 0.2), in 
full agreement with the arguments made in $2.3. The increasing frequency of the 
oscillations of our LZ(y)-curves in figure 4(a-c) with increasing A can be understood 
by considering the behaviour of the argument of the error-function factor in (2.16), 
since the factor Y + ( ~ ) ( O , E ~ )  tends to increase with increasing sweep. It can also be 
seen from these figures that our expressions for Y ( y )  with M I  > 1 and MI < 1 join 
smoothly at MI = 1. 

4. Concluding remarks 
By considering the behaviour of our expression for Y(y), we have demonstrated 

how the region of influence of the tip along the blade span will tend to be reduced 
by increasing either the sweep angle or the gust frequency. However, it is clear 
from figure 3 that, even for the highly swept subsonic leading-edge case, there is 
a significant discrepancy between the actual unsteady lift on the quarter-plane and 
what would be predicted using infinite-span theory over a number of chord lengths 
from the tip. Since modern fan and propeller blades tend to have long chords, this 
suggests that the use of infinite-span response theory is unjustified over much of the 
span, and that application of the sort of formulae developed in this paper is required 
not merely near the tip, but in fact along most of the blade. 

For an infinite-span blade there are two critical values of the spanwise gust 
wavenumber for which the gust moves sonically along the leading edge, and in 
each of these cases the chordwise oscillation in the scattered field vanishes, leading 
to an infinity in our expression for Y ( y ) .  We have demonstrated that one of these 
singularities is removed when the infinite-span blade is replaced by a quarter-plane, 
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FIGURE 4. Plots of J-Y(y)/VJ (solid lines) and ILZinr(y)/VI (dashed lines) against sweep angle A, 
with M = 1.2, y = 1 and with (a)  52 = kp = 5 ;  (b) SZ = 5,  k,  = 0; (c) 52 = 5 ,  kp = 10. 
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and that as the sweep angle is varied the lift per unit span will take a local maximum, 
but finite, value at this critical condition. It follows that for a finite-span blade the 
lift per unit span will take its largest value when the gust wavenumber along the 
leading edge equals either of the two critical values given in (2.18). This should be of 
practical importance, since it suggests that the unsteady response of the entire blade, 
and hence the noise generated, could be particularly large for the certain gust-sweep 
combinations identified in this paper. 

Finally, we emphasize that a closed-form expression for the acoustically weighted 
lift can be found via a trivial modification of our formula for 2 ( y ) ,  which could then 
be included in practical propeller and fan noise prediction schemes to account for the 
tip effects of swept blades. 

The author is particularly grateful for the financial support provided by the Royal 
Society. 

Appendix 
In this Appendix we present algebraic expressions for the various factors of y(k1, k2) 

which appear in our expressions for the lift - equations (2.16) and (2.17). In the case 
kl = 0 we have that 

~ ~ ( 0 ,  k2) = M2Q2 + 2MM252kz - (1 - Mi)ki  , (A 1) 

so that the Wiener-Hopf factorization in the k2 plane can be completed in the 
relatively compact form 

with the branch cuts for the square roots lying in the lower and upper halves of the 
k2 plane respectively. 

In addition, we require the quantity y- ( ' ) (k l ,a2)  for real kl,  and in order to do this 
in the case M1 < 1 we need to locate the branch point, K ,  of y(k1,az) lying in the 
upper half of the k l  plane. Defining 

(A 3) 
C M1M2a2 + MM'Q, 
D r$(M2 - 1) + 2~2MM20 + M2Q2 , 

we find that 

It then follows that 

y-(')(kl,a2) = (kl - K)f , (A 5 )  
with the branch cut for the square root lying in the upper half-plane. As already 
stated, the factor y-( ' ) (kl ,kz)  is set equal to unity for MI > 1. 
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